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ABSTRACT

In this paper, we consider the following low-rank matrix
approximation problem, referred to as separable simplex-
structured matrix factorization: given an input matrix X , find
W and H such that X ≈ WH where the columns of W are
chosen among the columns ofX and where the entries of each
column of H are nonnegative and sum to at most one. This
problem has been studied extensively in the literature and is a
generalization of separable nonnegative matrix factorization,
with applications for example in hyperspectral unmixing and
document analysis. Many methods have been proposed to
tackle this problem; the three main classes are greedy algo-
rithms, convex relaxations and combinatorial approaches. For
the first two classes, robustness to noise of several algorithms
have been characterized precisely. As far as we know, no
such result exist for combinatorial formulations. This paper
fills in this gap: we provide a tight robustness analysis of an
exact combinatorial formulation of the problem. Although
such formulations are difficult to optimize, we show that they
lead to stronger robustness to noise than greedy algorithms
and convex relaxations.

Index Terms— nonnegative matrix factorization, separa-
bility, sum-to-one constraint, robustness to noise

1. INTRODUCTION

The separable simplex-structured matrix factorization (sepa-
rable SSMF) problem is defined as follows: Given an input
matrix X ∈ Rm×n and a factorization rank r, find an index
set K of size r and a matrix H ∈ Rm×r such that

X ≈ X(:,K)H where H(:, j) ∈ ∆r for all j,

with
∆r = {h ∈ Rr | h ≥ 0,

∑
j

hj ≤ 1}.

Separable SSMF is a generalization of the separable non-
negative matrix factorization (NMF) problem which requires
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X ≥ 0. However, most algorithms for separable NMF can be
used for separable SSMF as nonnegativity of W is not key
in their design and analysis. This problem has many applica-
tions such as hyperspectral unmixing, document analysis and
time-resolved Raman spectroscopy, to cite a few. We refer
the reader to the recent survey [1] for more applications and
details about SSMF.

Remark 1 (Simplex constraint). In previous works [1],
SSMF refers to the problem where the columns of H live
on the unit simplex where the sum of the entries of each col-
umn of H is equal to one, as opposed to being smaller than
one as in our definition of ∆r. Our formulation is slightly
more general hence more flexible. For example, in hyper-
spectral unmixing, it allows to take into account different
intensities of light among the pixels in the image. This is the
reason why we prefer this formulation.

Problem statement In this paper, we will assume that the
input matrix X̃ has the following form.

Assumption 1. The noiseless separable matrix X ∈ Rm×n
is given by

X = X(:,K∗)H = WH,

where (i) |K∗| = r, (ii) H(:, j) ∈ ∆r for all 1 ≤ j ≤ n, and
(iii) the matrix W = X(:,K∗) ∈ Rm×r satisfies κ(W ) > 0,
where

κ(W ) = min
1≤k≤r

min
h∈∆r−1

||W (:, k)−W (:, [r]\{k})h||2,

with [r] = {1, 2, . . . , r}. The quantity κ(W ) is related to
the conditioning of the convex hull of the columns of W , and
κ(W ) > 0 if and only if no column of W is contained in
the convex hull of the other columns and the vector of ze-
ros. For simplicity of the presentation, we will assume w.l.o.g.
that maxk ||W (:, k)||2 = 1 (if this does not hold, X can be
multiplied by a positive constant). Under this assumption,
κ(W ) ≤ 1. Given X , the input noisy matrix X̃ is given by
X̃ = X +N with ||N(:, j)||2 ≤ ε for all j.

Finally, separable SSMF is the problem of finding the in-
dex set K of size r that allows to recover W as best as possi-
ble, given X̃ and r, that is, minimizing

q(K) = max
1≤k≤r

min
j∈K
||W (:, k)− X̃(:, j)||2.



In this paper, we will be interested in characterizing the ro-
bustness to noise of different algorithms that aim to recover
W given X̃ . More precisely, given that X̃ satisfies Asm. 1,
we would like to bound the error an algorithm makes when
recovering the columns of W , that is, provide some δ such
that q(K) ≤ δ, given that ε is sufficiently small, that is, given
that ε ≤ γ for some γ. The quantities γ and δ depend on the
algorithm and on the conditioning of the problem; see Table 1
for some examples. The condition ε ≤ γ < κ is necessary
for any algorithm, because otherwise a column of W can be
perturbed in such a way that it belongs the convex hull of the
others, which of course makes it impossible to detect. Also,
δ ≥ ε since the noise perturbs all columns of X including the
column of W .
Algorithms Algorithms for separable SSMF can be classi-
fied in three classes:
1. Greedy algorithms. This class of algorithms identifies se-
quentially the columns of W using different strategies. Usu-
ally, they follow a two-step strategy: (1) selection step, and
(2) projection step. For example, vertex component analy-
sis (VCA) [2] uses linear functions for the selection step and
orthogonal projection for the projection step, the successive
projection algorithm (SPA) [3] and related methods such as
FastAnchorWords [4] use strongly convex functions for the
selection step while also using orthogonal projection for the
projection step. XRAY [5] and the successive nonnegative
projection algorithm (SNPA) [6] take nonnegativity into ac-
count within the projection step. Preconditioned SPA (Prec-
SPA) performs a preconditioning to improve robustness to
noise of SPA. It is, as far as we know, the most robust greedy
algorithm for separable SSMF when W is full rank. Most of
the greedy algorithms have low computational cost and mem-
ory requirement but are less robust to noise.
2. Convex relaxations. The first provably correct algorithm
for separabe SSMF was proposed in [7] and is based on com-
puting the distance of each data points from the convex hull
of the other data points using linear programming [7]. Most
convex relaxation are based on the following reformulation
for separable SSMF: Find Y with r non-zero rows such that
X = XY . Promoting row sparsity can be achieved for ex-
ample by minimizing ||Y ||1,q =

∑
i ||Y (i, :)||q [8, 9, 10] or

using linear programming [11, 12, 13]. It turns out that these
two types of formulations are closely related, being essetially
equivalent [14], and significantly more robust than greedy al-
gorithms; see Table 1. However, they require the introduction
of the n-by-n matrix Y which is computationally heavy (for
example, in hyperspectral imaging, n is typically of the order
of millions). Note that a possible way to overcome this is-
sue is to selecting a subset of potential candidates among the
columns of X [14].
3. Combinatorial approaches. Given an index set K,
one can compute the error on fitting X , namely, g(K) =
minH(:,j)∈∆r ∀j ||X −X(:,K)H|| for some norm ||.|| which
is a convex optimization problem. Optimizing g over K is a

difficult combinatorial problem with
(
n
r

)
possible solutions.

However, many heuristic have been proposed to tackle it,
e.g., the famous local neighborhood approach N-FINDR [15],
ant-colony optimization [16], bee-colony and genetic algo-
rithms [17], alternating optimization [18], and approximation
algorithms [19], to cite a few. Similarly as for convex relax-
ations, this approach can be made computationally cheaper
by imposing the elements ofK to be in a subset of all columns
of X , e.g., columns identified by other algorithms as in [16]
which reduces drastically the number of possible solutions.

Table 1 compares the different robustness recovery results
for the different provably correct algorithms described in the
previous paragraph.

Outline of the paper and contribution As far as we know,
no robustness result has been provided for combinatorial ap-
proaches. This is the main contribution of this paper. Al-
though we cannot expect to compute optimal solutions for
these problems in general due to their complexity [19], it is
still interesting to know whether this model leads to stronger
(and tight) robustness for separable SSMF. If it was not the
case, there would be no incentive to use such combinatorial
approaches.

In this paper, we prove that a particular combinatorial for-
mulation, namely (1), achieves the best possible bound, up to
some constant factor. In fact, we prove in Theorem 2 that (1)
achieves an error of 8 ε

κ(W ) + 2ε given that ε < κ
4 , while it

is not possible to achieve a lower error up to some constant
factor, as proved in Theorem 3. This improves the bound for
the LP-based approaches either by a factor κ(W ) in the noise
allowed [7] or by a factor r on both the noise and error bounds
for the aproaches from [11, 8, 12, 13]; see Table 1.

2. PROBLEM DEFINITION AND COMBINATORIAL
FORMULATION

The most natural formulation that tries to recover W from X̃
is the following:

min
K

f(K), with f(K) = max
1≤j≤n

min
z∈∆
||x̃j − X̃(:,K)z||2.

(1)
This formulation tries to find the index set K so that all data
points are well approximated by a linear combinations of the
columns of X̃(:,K). The problem (1) is a difficult combinato-
rial problem with

(
n
r

)
possible solutions. However, assuming

we can solve this problem, what guarantee can we provide on
the recovery of W ? Is it more robust than LP-based formula-
tions? We answer these questions below.

3. ROBUSTNESS TO NOISE OF MODEL (1)

In this section, we prove robustness of using (1) to solve the
near-separable NMF problem. The first Lemma shows that
the solution K∗ achieves an error f(K∗) of at most 2ε.



noise level γ (ε ≤ γ) error δ (q(K) ≤ δ)

SPA [3] O
(

σmin(W )√
r cond(W )2

)
O
(
ε cond(W )2

)
AnchorWords [4] O

(
σmin(W )√
r cond(W )2

)
O (ε cond(W ))

SNPA [6] O
(
β(W )4

)
O
(

ε
β(W )3

)
Prec-SPA [20] O

(
σmin(W )
r
√
r

)
O (ε cond(W ))

LPs [7] O
(
κ(W )2

)
O
(

ε
κ(W )

)
Hottopixx [11, 12], LP [13] ≡ `1,q [14] O

(
κ(W ) mini6=j ||W (:,i)−W (,j)||

r

)
O
(

rε
κ(W )

)
This paper, model (1) κ(W )

4 8 ε
κ(W ) + ε

Table 1. Comparison of robust algorithms for separable SSMF applied on a matrix satisfying Asm. 1. The condition number
of W is denoted cond(W ) = σmin(W )

σmax(W ) , while β(W ) is the minimum between the norms of the residuals of the projections of
the columns of W onto the convex hull of the other columns of W, and the distances between these residuals [6].

Lemma 1. For a matrix X̃ satisfying Asm. 1, we have
f(K∗) ≤ 2ε.

Proof. We have x̃j = xj + nj = X(:,K∗)hj + nj and W̃ =

X̃(:,K∗) = W +N(:,K∗). Therefore, we have for all j,

min
y
||x̃j − W̃y||2 ≤ min

y
||xj −Wy||2 + ||Ny||2 + ||nj ||2

≤min
y
||xj −Wy||2 + max

y
||Ny||2 + ε = 2ε,

since maxy∈∆ ||Ny||2 = maxj ||N(:, j)||2 ≤ ε (Asm. 1).

The second Lemma provides a lower bound on the error
for any solution K.

Lemma 2. Let X̃ = X+N satisfy Asm. 1. LetK be an index
set of size r and let B = H(:,K) ∈ Rr×r so that X(:,K)=
WB. Let α = minj maxk B(j, k) ≤ 1. We have f(K) ≥
(1− α)κ− 2ε.

Proof. Clearly, this holds for α = 1 since f(K) ≥ 0 (in that
case, B is actually the identity matrix, up to permutation).
Otherwise, α < 1 and let j be such that α = maxk B(j, k).
We have, using a similar derivation as in Lemma 1,

min
h
||W̃ (:, j)−X̃(:,K)h||2 ≥ min

h
||W (:, j)−X(:,K)h||2−2ε.

Note that for any h ∈ ∆, (Bh)j =
∑
k B(j, k)hk ≤

maxk B(j, k) = α. Then,

min
h
||W (:, j)−X(:,K)h||2 = min

h
||W (:, j)−WBh||2

= min
h
||(1− (Bh)j)W (:, j)−W (:, [r]\{k})(Bh)[r]\{k}||2

≥min
h∈δ

(1− (Bh)j)||W (:, j)−W (:, [r]\{j})
(Bh)[r]\{j}

(1− (Bh)j)
||2

≥(1− α)κ.

In fact, Bh ∈ ∆r hence (Bh)[r]\{j}
(1−(Bh)j)

∈ ∆r−1 for (Bh)j ≤
α < 1.

Without duplicates and near-duplicates Under Asm. 1,
the matrix X can be written as

X = W [Ir, H
′] Π, (2)

for some permutation matrix Π. If the entries of H ′ are
strictly smaller than one, there are no duplicated columns of
W in the data set. Under this condition, we can prove the
following robustness of recovering K∗ using model (1).

Theorem 1. Let X̃ = X + N satisfy Asm. 1 where X has
the form (2). Let us assume that ε < (1−β)κ

4 where β =
maxi,j H

′(i, j) < 1. Then the optimal solution of (1) is K∗
hence max1≤k≤r minj∈K ||W (:, k)− X̃(:, j)||2 ≤ ε.

Proof. Since any solution other than K∗ will have error at
least (1 − β)κ − 2ε (Lemma 2) and K∗ has error at most
2ε (Lemma 1), K∗ is the unique optimal solution as long as
(1 − β)κ − 2ε > 2ε while K∗ leads to an error on W of less
than ε (Asm. 1).

The bound of the theorem above is tight since we cannot
have error smaller than ε by construction. In this particular
setting (no duplicated nor near duplicated columns of W ),
LP-based formulations provide error smaller than ε when
ε < (1−β)κ

10 [13], hence provide as good solutions, up to a
factor 5

2 . Unfortunately, in many practical settings, there are
duplicated and near-duplicated columns of W in the data set.
For example, in hyperspectral images satisfying the pure-
pixel assumption, there are usually more than one pure pixel
per endmember, and many pixels contain mostly one material.

With duplicates and near-duplicates In the presence of
duplicated and near-duplicated columns of W , the robustness
result is the following.



Theorem 2. Let X̃ satisfy Assumption 1 and let us assume
that ε < κ

4 . Then any optimal solution K of (1) satisfies

max
1≤k≤r

min
j∈K
||W (:, k)− X̃(:, j)||2 ≤

8ε

κ
+ ε.

Proof. First, note that ||W (:, j) − X̃(:, j)||2 ≤ ||W (:, j) −
X(:, j)||2 + ε. Then, let X(:,K) = WB with B = H(:,K).
Let α = minj maxk B(j, k) ≤ 1. By optimality of K and by
Lemmas 1 and 2, we have

2ε ≥ f(K∗) ≥ f(K) ≥ κ(1− α)− 2ε.

This implies that κ(1 − α) ≤ 4ε ⇐⇒ α ≥ 1 − 4ε
κ . By

definition α ≤ maxk B(j, k), hence for each row of B there
is at least one entry with value 1− 4ε

κ , that is, for each j there
exists kj such that B(j, kj) ≥ 1− 4ε

κ . Hence we have that for
all j, there exists kj such that

||W (:, j)−WB(:, kj)||2
= ||W (:, j)−W (:, j)B(j, kj)−W:,[r]\{j}B([r]\{j}, jk)||2
= ||(1−B(j, kj))W (:, j)−W:,[r]\{j}B([r]\{j}, jk)||2

≤ 4ε

κ
||W (:, j)||2 +

4ε

κ
max

h∈∆r−1
||W:,[r]\{j}h||2

≤ 8ε

κ
max
k
||W (:, k)||2 =

8ε

κ
,

since B(:, kj) ∈ ∆r and B(j, kj) ≥ 1 − 4ε
κ implies that

||B([r]\{j}, jk)||1 ≤ 4ε
κ and B(j, kj) ≤ 4ε

κ , while we have
maxk ||W (:, k)||2 = 1 by Assumption 1.

Oracle and optimal bound In the following, we prove a
lower bound on the best possible accuracy achievable by solv-
ing (1). This proves that the bounds in Theorem 2 are tight up
to a (small) multiplicative factor.

Theorem 3. There exists a class of near-separable matrices
X̃ satisfying Assumption 1 and with ε < κ

4 such that the opti-
mal solution of (1) satisfies

max
1≤k≤r

min
j∈K
||W (:, k)− X̃(:, j)||2 >

√
2
ε

κ
+
√

2ε.

Proof. Let W =

(
1 0 1/2 + κ√

2

0 1 1/2 + κ√
2

)
and let κ ≤ 1 −

√
2/2 so that maxk ||W (:, k)||2 = 1 and κ(W ) = κ. Let

also H = [I, h] where h = (1 − λ, 0, λ) for some λ ∈ [0, 1]
to be defined later. This implies that the fourth column of
X = WH is a linear combination of the first and third column
of W , that is, X(:, 4) = (1 − λ)W (:, 1) + λW (:, 3) = (1 −
λ/2+κλ/

√
2, λ/2+κλ/

√
2). We only add noise to the third

column of X using N(:, 3) = −(ε, ε)/
√

2 with ||N(:, 3)||2 =
ε; see Figure 1 for an illustration.

In the following, we show that, for a suitable choice of
λ, the optimal solution of (1) is {1, 2, 4} and that ||W (:, 3)−
X̃(:, 4)||2 >

√
2 εκ +

√
2ε which will conclude the proof.

Fig. 1. Illustration of the construction from Theorem 3.

Let us first compute ||W (:, 3)−X(:, 4)||2 = ||W (:, 3)−
(1−λ)W (:, 1)−λW (:, 3)||2 = (1−λ)||W (:, 3)−W (:, 1)||2 >
1√
2
(1−λ), since ||W (:, 3)−W (:, 1)||2 = ||(1/2− κ√

2
, 1/2+

κ√
2
)||2 > ||(1/2, 1/2)||2 = 1√

2
.

Let us define the vector v = µX(:, 4) + (1 − µ)W (:, 2)
with µ = 1

2−λ so that v = (v1, v2) with v1 = v2 =
1
2 + κ λ√

2(2−λ)
. The vector v will approximate X̃(:, 3) using

X̃(:, 2) and X̃(:, 4). We have

||W (:, 3)− v||2 =
κ√
2

(
1− λ

2− λ

)
=
√

2κ
1− λ
2− λ

.

Let us choose λ such that ||W (:, 3) − v||2 < 2ε (note that
N(:, 3) makes W (:, 3) goes toward v hence this will imply
that ||X̃(:, 3) − v||2 < ε). Denoting δλ = 1 − λ, this re-
quires

√
2κ δλ

1+δλ
< 2ε ⇐⇒ δλ < 2ε√

2κ−2ε
⇐⇒ λ >

1 − 2ε√
2κ−2ε

. Assuming ε < κ/4, this condition is implied
by δλ < 2ε√

2κ−κ/2 = 2√
2−1/2

ε
κ hence also by δλ < 2 εκ since

√
2 − 1/2 = 0.9142. Finally, choosing λ = 1 − 2 εκ leads to

a problem where the solution K = {1, 2, 4} leads to a lower
error than K∗ = {1, 2, 3} (namely, ||X̃(:, 3) − v||2 < ε vs.
ε = ||X̃(:, 3) − W (:, 2)||2 –all other columns of X̃ are ex-
actly reconstructed since no noise is added to them and they
are extracted by K) while ||X(:, 4) − W (:, 3)||2 = (1 −
λ)
√

1 + κ2 ≥ 2ε
κ

1+κ√
2

=
√

2 εκ +
√

2ε, since
√

1 + κ2 ≥
√

2 + κ−1√
2

= 1+κ√
2

(first-order Taylor approximation around

κ = 1 of the convex function
√

1 + κ2).

4. CONCLUSION

In this paper, we have proved, for the first time, tight robust-
ness bounds for the combinatorial model (1) that tackles sep-
arable SSMF. Although (1) is difficult to tackle, it leads to
more robust solutions than other approaches hence it makes
sense in practice to devise (heuristic) algorithms for this type
of models. In particular, this justifies the use of these algo-
rithms initialized by solutions obtained by greedy methods
and convex relaxations to improve these solutions further; as
done for example in [16, 18]. Further research include exten-
sive numerical comparison between Greedy algorithms, con-
vex relaxations and combinatorial approaches to asses their
robustness in practical scenarios.
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